Abstract
Background: Infiltration of inflammatory cells in bronchial mucosa and glandular hypersecretion are hallmarks of asthma. It has been postulated that exhaled breath condensate (EBC) mirrors events in epithelial lining fluid of airways, such as presence of local inflammation as well as glandular hypersecretion. It is also well known that eosinophil cationic protein (ECP) and cysteinyl-leukotrienes (cys-LT) are released by circulating inflammatory cells when triggered by antigen stimulation in asthma patients. Objectives: The aim of this study was to evaluate whether chlorine and/or cys-LT in EBC would reflect changes of exposure of airborne pollen in patients with asthma. Methods: EBC and serum were collected from 23 patients with allergic asthma during a pollen season and repeated 5 months later during a period with no aeroallergens. Chlorine was measured by means of a sensitive coulometric technique and cys-LT by an EIA technique. Serum ECP was measured and lung function tests were performed and symptoms noted during both occasions. Results: Significantly higher concentrations of chlorine in EBC (p = 0.007) and ECP in serum (p = 0.003) were found during the pollen season compared to post-season. Chlorine levels tended to be higher in patients who reported of chest symptoms compared to those who denied symptoms during the pollen season (p = 0.06). Areas under the receiver-operated characteristic curves (AUC<sub>ROC</sub>) were compared and similar discriminative power to identify exacerbations of asthma was recorded by chlorine in EBC (range 0.67–0.78) and ECP in serum (range 0.64–0.78). Conclusion: It is concluded that chlorine in EBC and ECP in serum decreased significantly post-season, and this is suggested to mirror the decrement in airborne antigen. It is furthermore proposed that chlorine in EBC and ECP in serum tend to have a similar capacity to identify seasonal variations in airborne pollen in patients with asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.