Abstract
Tellurium nanotubes have been grown by physical vapor deposition under inert environment at atmospheric pressure as well as under vacuum conditions. Different techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and optical absorption have been utilized for characterization of grown structures. Films prepared using both types of tellurium nanotubes were characterized for sensitivity to oxidizing and reducing gases and it was found that the relative response to gases depends on the microstructure. Nanotubes prepared at atmospheric pressure (of argon) showed high sensitivity and better selectivity to chlorine gas. Impedance spectroscopy studies showed that the response to chlorine is mainly contributed by grain boundaries and is therefore enhanced for nanotubes prepared under argon atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.