Abstract

The chlorine-assisted growth of epitaxial indium gallium nitride (InGaN) and aluminum gallium nitride (AlGaN) crystals was achieved with high reproducibility at the low temperature of 600 °C in the plasma-enhanced chemical vapor deposition (PECVD) reactor via the reaction between the metal trichlorides with high vapor pressures and nitrogen plasma. After adding hydrogen gas to the growth processes of InGaN and AlGaN, the problems for the etching of chlorine plasma on the as-grown InGaN crystals and the appearance of crystal planes different from (002), derived from the worse and the better bonding abilities of materials, respectively, were solved effectively. Inside AlGaN crystals, the phase separation of gallium nitride (GaN) and aluminum nitride (AlN) can be avoided by controlling the amount of precursor aluminum. The epitaxial InGaN and AlGaN crystals have the same (002) crystal plane as the GaN(002) bottom layers and exhibit the same ⟨0001⟩ crystallographic growth direction along the axial direction of GaN microrods, representing the consistent growth orientation of the epitaxial crystals. The process temperatures of InGaN and AlGaN can be greatly decreased using chlorine gas and plasma so that the related applications of low-temperature growth may be expanded drastically in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call