Abstract

The oxygen evolution reaction (OER) plays a crucial role in many electrochemical energy technologies, and creating multiple beneficial factors for OER catalysis is desirable for achieving high catalytic efficiency. Here, we highlight a new halogen-chlorine (Cl)-anion doping strategy to boost the OER activity of perovskite oxides. As a proof-of-concept, proper Cl doping at the oxygen site of LaFeO3 (LFO) perovskite can induce multiple favorable characteristics for catalyzing the OER, including rich oxygen vacancies, increased electrical conductivity and enhanced Fe-O covalency. Benefiting from these factors, the LaFeO2.9-δCl0.1 (LFOCl) perovskite displays significant intrinsic activity enhancement by a factor of around three relative to its parent LFO. This work uncovers the effect of Cl-anion doping in perovskites on promoting OER performance and paves a new way to design highly efficient electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.