Abstract

Adsorption techniques for industrial wastewater treatment rich in heavy metals and aqueous solutions of water-soluble such as Cl−, F−, HCO3−, NO3−, SO2−4, and PO3−, often include technologies for toxicity removals. The recent advancement and technical applicability in the treatment of chlorine and chlorinated compounds from industrial wastewater are reviewed in this article. Chlorine and chlorinated compounds are among the common discharged constituents from numerous industries. They can be carcinogenic or naturally toxic and can pose issues to aquatic ecosystems and human beings. Thus, elimination of chlorides and chlorinated compounds from water or wastewater is inevitable to get rid of the problem. Several techniques are being applied for the reduction of chlorine and chlorinated compounds in water. These include biodegradation, photochemical, adsorption, chemical, electrochemical, photo-electrochemical, membrane, supercritical extraction and catalytic method. Chlorine can react with various organic and inorganic micro-pollutants. However, the potential reactivity of chlorine for specific compounds is small, and only minor variations in the structure of the parent compound are anticipated in the water treatment process under typical conditions. This paper reviews different techniques and aspects related to chlorine removal, the types of chlorine species in solution and their catalyst, chlorine fate and transport into the environment, electrochemical techniques for de-chlorination of water, kinetics, mechanisms of reduction of chlorinated compounds, and kinetics of the electrochemical reaction of chlorine compounds. Keywords: Industrial waste, Kinetics, Wastewater, Water purification

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call