Abstract

Employing methods of separation based on selective chlorination it is possible to separate valuable components, such as metals and rare earths, from ores and / or solid wastes. In this paper we study the chlorination reaction of ruthenium oxide. This element is among nuclear fission products, also part of many electronic wastes and numerous catalysts in the chemical industry. The study of the chlorination reaction of ruthenium oxide will allow to analyze in which conditions it is possible to apply gaseous chlorination for ruthenium recovery. No systematic studies on the kinetics and chemical mechanism of ruthenium oxide chlorination are available in the literature. In the present study, we performed a thermodynamic analysis of possible reaction pathways. The reaction products were identified by scanning electron microscopy (SEM) and x-ray Diffraction (xrd), and the experimental conditions for obtaining stable α-RuCl3 by RuO2 chlorination and subsequent heating in Cl2 were established. The starting temperature for the chlorination was determined at 983K. The observed mass loss is due to formation of volatile products. We analyzed the effects of gas flow rate, crucible geometry, and sample mass on the kinetics of the reaction, in order to establish the corresponding experimental reaction conditions for chemical kinetic control. The effect of temperature was analyzed and an apparent activation energy of 173 ± 8kJ.mol-1 was obtained for the chlorination reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.