Abstract

Abstract Microbial surface adhesion to surfaces and subsequent biofilm establishment are ubiquitous in drinking water systems, which often contribute to deteriorated water quality. Disinfectants are common agents applied to drinking water controlling microbial propagation, yet the underlying mechanisms of how disinfectants function to regulate microbial activity and thereby biofilm development remains elusive. We experimentally studied the effects of chlorination on extracellular polymeric substance (EPS) production, and its impacts on early-stage biofilm formation in a model drinking water system. Results showed that low-level chlorine (≤ 1.0 mg/L) stimulated microbial EPS (especially of proteins) excretion that favored early-stage biofilm formation. Microbes experiencing higher chlorination (>1.0 mg/L) exhibited clearly suppressed growth associated with reduced EPS release, consequently yielding less biofilm formation. Removal of cell-attached proteins and polysaccharides diminished biofilm formation, which highlighted the critical role of EPS (especially protein components) in biofilm development. A negative correlation between chlorination-mediated microbial protein production and cell surface charge suggested that chlorine disinfection may modify cell surface properties through regulation of microbial EPS excretion and thereby mediate biofilm formation. With these quantitative estimations, this study provides novel insights into how chlorination-mediated EPS excretion shapes early-stage biofilm formation, which is essential for practical functioning of drinking water systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call