Abstract

Chlorinated phosphorus flame retardants are organic pollutants widely distributed in the environment. However, there is still a lack of understanding of the toxicity mechanism of chlorinated phosphorus flame retardants at the molecular level. Tris (1, 3-dichloroisopropyl) phosphate (TDCPP), tris (2-chloropropyl) phosphate (TCPP) and tris (2-chloroethyl) phosphate (TCEP) were used as typical representatives of chlorinated phosphorus flame retardants to evaluate their cytotoxicity as well as changes in the expression of the enzymes lactate dehydrogenase (LDH), superoxide dismutase (SOD), and catalase (CAT), which will be meaningful for an in-depth study of the toxicity mechanism of TDCPP, TCPP and TCEP. The results showed that the three chemicals reduced cell viability over a period of 24 h. The exposure increased extracellular levels of lactate dehydrogenase and decreased intracellular levels of superoxide dismutase and catalase in a concentration-dependent manner. Expression of the SOD and CAT genes were down-regulated indicating that the SMMC-7721 human hepatocarcinoma cells may experience oxidative damage as a result of exposure to the three chemicals. The expression of the Bax apoptosis protein was up-regulated and the Bcl-2 apoptosis protein was down-regulated, suggesting that the three chemicals may cause functional defects, damage the cell structure and promote apoptosis. The results from this study should provide the basis for a detailed investigation of the ecological toxicity of chlorinated phosphorus flame retardants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call