Abstract

Abiotic transformation of trichloroethene (TCE) in fractured porous rock such as sandstone is challenging to characterize and quantify. The objective of this study was to estimate the pseudo first-order abiotic reaction rate coefficients in diffusion-dominated intact core microcosms. The microcosms imitated clean flow through a fracture next to a contaminated rock matrix by exchanging uncontaminated groundwater, unamended or lactate-amended, in a chamber above a TCE-infused sandstone core. Rate coefficients were assessed using a numerical model of the microcosms that were calibrated to monitoring data. Average initial rate coefficients for complete dechlorination of TCE to acetylene, ethene, and ethane were estimated as 0.019 y-1 in unamended microcosms and 0.024 y-1 in lactate-amended microcosms. Moderately higher values (0.026 y-1 for unamended and 0.035 y-1 for lactate-amended) were obtained based on 13C enrichment data. Abiotic transformation rate coefficients based on gas formation were decreased in unamended microcosms after ∼25 days, to an average of 0.0008 y-1. This was presumably due to depletion of reductive capacity (average values of 0.12 ± 0.10 μeeq/g iron and 18 ± 15 μeeq/g extractable iron). Model-derived rate coefficients and reductive capacities for the intact core microcosms aligned well with results from a previous microcosm study using crushed sandstone from the same site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call