Abstract
The aim of the study was to assess whether NCL-SG3, the only immortalized sweat gland cell line available, can be used as an in vitro model to study chloride ion transport in cultured sweat gland cells. Cl − efflux was measured using the MQAE dye fluorescence technique after stimulating the cells with different agonists. A significant stimulation of chloride efflux was achieved with the calcium ionophore A23187 resulting in an efflux rate of 0.9 mM/s. Both ATP and UTP activated chloride efflux in these cells, with the ATP response being larger. IBMX and forskolin stimulation did not induce a rate of chloride efflux above the basal level. Immunocytochemistry showed no detectable CFTR in NCL-SG3 cells. This finding was confirmed with flow cytometry analysis. Niflumic acid (20 and 100 μM NFA) and 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid (H2DIDS) (100 ìM) decreased the rate of ATP-stimulated chloride efflux significantly (0.40 and 0.31 mM/s with NFA, 0.37 mM/s with H2DIDS). Gadolinium (20 ìM) had no effect on the chloride transport rate. In conclusion, the NCL-SG3 cells retain some of the aspects of human sweat gland epithelium, such as the ability to form cell–cell contacts. The CFTR protein is neither functional nor expressed in cultured NCL-SG3 sweat gland cells. Ca 2+-activated chloride conductance is confirmed and the putative Ca 2+-activated chloride channel (CaCC) is further characterized in term of its pharmacological sensitivity. The NCL-SG3 sweat gland cell line can be used to investigate the characteristics of the CaCC and to identify the channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.