Abstract

A noninvasive scanning ion-selective electrode technique (SIET) was applied to measure Cl- transport at individual mitochondrion-rich cells (MRCs) in the skin of euryhaline tilapia (Oreochromis mossambicus) larvae. In seawater (SW)-acclimated larvae, outward Cl- gradients (20-80 mM higher than the background) were measured at the surface, indicating a secretion of Cl- from the skin. By serial probing over the surface of MRCs and adjacent keratinocytes (KCs), a significant outward flux of Cl- was detected at the apical opening (membrane) of MRCs. Treatment with 100 microM ouabain or bumetanide inhibited the Cl- secretion by approximately 75%. In freshwater (FW)-acclimated larvae, a lower level of outward Cl- gradients (0.2-1 mM) was measured at the skin surface. Low-Cl- water (<0.005 mM) acclimation increased the apical Na+-Cl- cotransporter (NCC) immunoreactivity of MRCs in the larval skin. An inward flux of Cl- was detected when probing the exterior surface of a group of MRCs (convex-MRCs) that express the NCC. An NCC inhibitor (100 microM metolazone) reduced the flux by approximately 90%. This study provides direct and convincing evidence for Cl- transport by MRCs of SW- and FW-acclimated euryhaline tilapia and the involvement of an apical NCC in Cl- uptake of MRCs of FW-acclimated fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.