Abstract

The natural and engineered hydraulic trap systems in sanitary-engineered solid waste landfills were investigated using three layer one dimensional laboratory models. The models consisted of a top reservoir containing a sodium chloride source solution, a compacted upper silt layer as a primary liner, a coarse sand layer as a secondary leachate collection system or a hydraulic control layer, a compacted lower silt layer as a secondary liner, and a bottom water reservoir as a groundwater aquifer. In the first test, the natural hydraulic trap system (upward flow through the lower silt layer) was modeled. In this case, the contaminant transport mechanisms through the upper silt layer were downward advection and diffusion, and through the lower silt layer, diffusion was downward and advection was upward. The results showed that the implementation of the natural hydraulic control system could effectively reduce chloride transport to the bottom reservoir. In the second test, the natural and engineering hydraulic trap systems were simulated (upward flow from the bottom reservoir to the upper reservoir). In the third test, the engineered hydraulic trap system (downward flow through the upper silt layer and upward flow through the lower silt layer) was modeled. The results showed that the natural and engineered hydraulic trap systems have an important effect in reducing chloride migration toward the underlying aquifer. In all experiments the chloride concentrations in the silt and coarse sand layers and top and bottom reservoirs were measured and the observed concentrations were compared with concentrations calculated by a theoretical model. A good agreement was obtained between the observed and theoretical data confirming the acceptable accuracy of the experimental methodologies, observations, and the theoretical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call