Abstract

This paper explored the penetration of chloride into concrete damaged by high-cycle compressive fatigue loading. Two environmental conditions including immersion and wetting-drying cycles were prepared for experimentally investigating the transport performance of chloride in fatigue-damaged concrete. Additionally, a prediction model was developed with the damage index of residual strain. Test results revealed that both apparent diffusion coefficients and contents of chloride at each depth increased in fatigue-damaged concrete, indicating that the fatigue damage significantly degraded the resistance of concrete to chloride penetration. Furthermore, for fatigue damaged concretes with extremely different fatigue cycles and load levels but the same residual strain, the chloride ion content profiles were highly overlapped, which demonstrated the reasonability of selecting residual strains as fatigue damage indexes. The applicability of the transport model was firstly validated with the measured chloride contents and then the chloride transport behavior in gradient fatigue-damaged concrete was investigated numerically using the validated model. The numerical results indicated that the chloride transport was more sensitive to the residual strain at the exposed edge than to the residual curvature and the effect of the later can be neglected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call