Abstract

1. This study was carried out to determine the types and activities of carrier proteins which transport the chloride ion in pig jejunal brush-border membranes, with an emphasis on studying the properties of chloride conductance activity in vesicles prepared from these membranes. 2. Sodium-chloride co-transport activity was not detected in this tissue. A sodium-proton antiport with typical amiloride sensitivity was present. An anion exchanger linking chloride to hydroxyl or bicarbonate ions was also found in the pig jejunal brush-border membrane vesicles. 3. Chloride conductance activity in this system was specifically dependent on the buffering agents used for vesicle preparation. Conductance activity could not be demonstrated in vesicles prepared in imidazolium acetate or in HEPES-Tris buffers. HEPES-tetramethylammonium buffering of vesicles in the chloride uptake system produced a significant conductance response to a potassium gradient plus valinomycin. 4. Chloride conductance showed saturable kinetics with respect to substrate concentration, with a Michaelis-Menten constant (Km) of approximately 116 mM and a maximum velocity (Vmax) of 132 nmol (mg protein)-1 min-1. 5. Preliminary screening of potential inhibitors of chloride conductance showed only minimal inhibitor effects of SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-sulphonic acid), anthracene-9-carboxylate, N-phenylanthranilate and piretanide. 6. The conductance activity in pig jejunal vesicles appears to have stringent buffer requirements, and to be relatively insensitive to the effects of reported conductance inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.