Abstract

Chloride ion efflux is an early event occurring after exposure of neutrophilic polymorphonuclear leukocytes (PMN) in suspension to several agonists, including cytokines such as tumor necrosis factor-alpha (TNF) and granulocyte/macrophage-colony stimulating factor (Shimizu, Y., R.H. Daniels, M.A. Elmore, M.J. Finnen, M.E. Hill, and J.M. Lackie. 1993. Biochem. Pharmacol. 9:1743-1751). We have studied TNF-induced Cl- movements in PMN residing on fibronectin (FN) (FN-PMN) and their relationships to adherence, spreading, and activation of the respiratory burst. Occupancy of the TNF-R55 and engagement of beta 2 integrins cosignaled for an early, marked, and prolonged Cl- efflux that was accompanied by a fall in intracellular chloride levels (Cl-i). A possible causal relationship between Cl- efflux, adherence, and respiratory burst was first suggested by kinetic studies, showing that TNF-induced Cl- efflux preceded both the adhesive and metabolic response, and was then confirmed by inhibition of all three responses by pretreating PMN with inhibitors of Cl- efflux, such as ethacrynic acid. Moreover, Cl- efflux induced by means other than TNF treatment, i.e., by using Cl(-)-free media, was followed by increased adherence, spreading, and metabolic activation, thus mimicking TNF effects. These studies provide the first evidence that a drastic decrease of Cl-i in FN-PMN may represent an essential step in the cascade of events leading to activation of proadhesive molecules, reorganization of the cytoskeleton network, and assembly of the O2(-)-forming NADPH oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.