Abstract
The chloride-ion concentration dependence of the molecular dimension in the acid-denatured state of equine β-lactoglobulin (ELG) was investigated by small-angle X-ray scattering. In the presence of chloride ion, ELG has a globular and compact conformation (the A state). The molecular dimension of ELG increases little with decreasing chloride-ion concentration. A remarkable dependence was observed for a mutant protein in which both Cys66 and Cys160 were replaced with Ala (C66A/C160A). In the presence of chloride ion, C66A/C160A has a globular and compact conformation, like the wild type. In the absence of chloride ion, however, the molecular dimension and shape was close to that in the urea-unfolded state. Previously, we have shown that the helix content in the acid-denatured state increases with decreasing chloride-ion concentration [Yamada et al. (2006). Proteins Struct. Funct. Bioinf. 63, 595–602]. These results suggest that the secondary structure in the A state is mainly determined by non-local interactions. When they are absent in an expanded conformation, the local interactions become predominant and the amount of non-native α-helix increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.