Abstract

Chloride intracellular channel 1 (CLIC1) has been demonstrated to be overexpressed in gastric cancer, and elevated CLIC1 expression levels are markedly associated with the processes of tumor cell migration and invasion. However, the regulatory mechanism and signaling pathway underlying these processes have remained to be elucidated. The present study examined the impact of N-acetyl cysteine (NAC), indanyloxyacetic acid (IAA)-94 and SB203580, inhibitors of reactive oxygen species (ROS), as well as CLIC1 and p38 mitogen-activated protein kinase (MAPK) on the migration and invasion of SGC-7901 gastric cancer cells in a hypoxia-reoxygenation (H-R) microenvironment. The results demonstrated that intracellular ROS and CLIC1 levels were increased under H-R conditions, and that functional inhibition of CLIC1 significantly decreased the H-R-elevated ROS generation and p-p38 MAPK levels in SGC-7901 cells, as well as inhibited the migration and invasion of SGC-7901 cells. In addition, the expression levels of MMP-2 and MMP-9 were inhibited by NAC, IAA-94 and SB203580. These results indicated that CLIC1 regulates gastric cancer-cell migration and invasion via the ROS-mediated p38 MAPK signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call