Abstract

The potassium-chloride cotransporter 2 (KCC2)-dependent intracellular chloride level determines whether neurons respond to GABA and/or glycine by depolarization or hyperpolarization. However, still unknown is the role of KCC2-dependent chloride homeostasis in regulating the spontaneous activity of neuronal circuits via GABA A receptor (GABA AR) and the glycine receptor (GlyR). In this study, patch-clamp recordings were performed to measure the change of spontaneous neuronal activity in cultured hippocampal neurons. Our results showed that inhibition of KCC2 with furosemide, as well as blockade of GABA AR with bicuculline, significantly enhanced circuit activity. Perfusion with bicuculline further enhanced the effects of furosemide on spontaneous circuit activity, while furosemide did not alter the effects of bicuculline. Surprisingly, blockade of GlyR not only induced obvious tonic currents, but also significantly decreased spontaneous synaptic activity. Moreover, inhibition of KCC2 did not change the depressive effect of strychnine on neuronal circuits. Our findings suggest that KCC2-dependent chloride homeostasis is mainly involved in GABA AR-mediated synaptic inhibition whereas GlyR-mediated tonic action plays a totally different role in regulating hippocampal circuit activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.