Abstract
Because of the high intracellular Cl- concentration ([Cl-]i) in gastrointestinal smooth muscle, receptor-mediated opening of Cl- channels at the cell resting potential could represent a plausible mechanism for initial receptor-mediated cell depolarization. To test this hypothesis, we characterized activation of large-conductance Cl- channels by the neurokinin-1 (NK-1) receptor agonist [Sar9,Met(O2)11]-substance P, by specific second messengers, and by direct G protein activation in myocytes isolated from the rabbit colon longitudinal muscle layer. In excised inside-out patches, large-conductance ion channels selective for Cl- over Na+ could be induced by holding the patch at pipette potentials values > 60 mV. The channel showed multiple smaller conductance states (< or = 20) but could open and close via a main gate. When the channel was fully open, its slope conductance was 300 pS, with substates as small as 15 pS, comparable to the predominant conductance observed in cell-attached patches. The voltage-activation profile for full conductance was bell-shaped with maximal open probability (Po) for channel opening of approximately 0 mV. In cell-attached patches, addition of the NK-1 agonist to pipette solution activated a channel that corresponded to a subconductance state of the maxi Cl- channel. The voltage-activation profile for this subconductance state showed a maximal Po value for membrane potentials of approximately 0 mV, with rapid inactivation at more positive and partial inactivation at more negative membrane potentials. In excised inside-out patches, both the full and smaller conductance states of the Cl- channel were activated by the nonhydrolyzable guanosine triphosphate analogue guanosine 5'-O-(3-thiotriphosphate) and inhibited by pertussis toxin (PTX), whereas [Ca2+]i increased channel activity only in concentrations > 1 mM. In cell-attached patches, addition of different Ca2+ ionophores resulted in channel activation in 10% of cells, and activators of protein kinase A or protein kinase C had no effect. These findings are consistent with the hypothesis of a possible role of G protein-coupled Cl- channels in receptor-mediated initial cell depolarization in longitudinal colonic smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.