Abstract

AimChloride channel 7 (CLC-7), broadly expressed in kidney tissues, affects the lysosome degradation pathway. And redox status impairment contributes to cell apoptosis and activates autophagy flux. This study mainly investigates the role and molecular mechanism of CLC-7 in redox status impairment-induced autophagic flux and apoptosis. Main methodsWhen NRK52E cells, rat renal tubular epithelial cells, were exposed to H2O2 treatment, apoptosis, autophagy flux, and CLC-7 expression were detected. Further investigation was done to observe the change of apoptosis and autophagy flux in renal cells under overexpression or knocking down of CLC-7. The lysosomes acidity, lysosome enzyme Cathepsin D activity and phosphorylation of Ampk/mTOR were also examined when CLC-7 was overexpressed or knocked down. Key findingsRedox status impairment induced apoptosis and autophagy flux in NRK52E cells and upregulated CLC-7. Overexpression of CLC-7 increased lysosome acidity and Cathepsin D activity. In cells with CLC-7 overexpression, we observed a significant increase of autophagy flux and decline of apoptosis, as well as an apparent increase of p-Ampk and decrease of p-mTOR. On the contrary, cells with knocking down CLC-7 led to opposite results. SignificancesCLC-7 is essential to maintain and enhance acidity and enzyme activity in lysosome. Through activating autophagy flux, it exerts survival against renal tubular epithelial cell apoptosis induced by redox status impairment. Its function to modulate Ampk/mTOR pathway is the possible reason why CLC-7 can trigger autophagy flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.