Abstract

Chloride binding is often described by chloride binding isotherm, which is closely related to the service life of concrete structures in chloride environments. Many methods have been proposed to determine chloride binding isotherm. Compared to other methods, chloride binding isotherms obtained directly from nonsteady-state diffusion tests seem closer to the reality. We studied the chloride binding isotherm from both nonsteady-state electrical-accelerated migration and diffusion tests at different temperatures. Twelve concrete mixes with different supplementary cementing materials and water-to-binder ratios of 0.35, 0.48 and 0.6 were cast for study. The specimens after diffusion (or migration) tests were sliced layer by layer, and acid-soluble and free chloride contents of each layer were measured. A chloride binding isotherm was obtained from one specimen. Experimental results indicated that electrical voltage had a slight effect on the chloride binding isotherm of concrete. Temperature had a positive effect on chloride binding. The higher the water-to-binder ratio was, the higher the chloride binding was.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.