Abstract
Carrot tissue is taken as a representative glycophilic tissue. It accumulates K+, Cl- and total osmotica to a steady level after 10-15 days. This level of Cl- is nearly constant and is independent of external KCl concentration and of turgor. Cl- influx is also independent of turgor. It therefore appears that the Cl- accumulating system in carrot (and possibly in other glycophytes) can, under artificial conditions, act as a homeostat for intracellular C- concentration, and is not the basis of turgor maintenance. It is suggested that turgor might be maintained by controlled accumulation of K+ carboxylates in glycophytes. Beet tissue is taken as a representative halophilic tissue. It accumulates K+, Cl-, and total osmotica to a steady level after about 4 days. At this stage turgor is constant, due to differences in the levels of KCl accumulated. Cl- influx is stimulated by reducing turgor after a lag of 3-5 h. The relationship of Cl- influx to turgor is non-linear. It therefore appears that in beet (and possibly in other halophytes) turgor maintenance is based on the turgor-sensitive accumulation of Cl- salts. Cl- influx in beet is also affected by changes in intracellular Cl- concentration, as in carrot. It is suggested that this feedback relationship may primarily be part of a system for the controlled uptake of nutrients rather than of Cl- in both tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.