Abstract

ObjectiveThe present study investigated the ability of a chlorhexidine (CHX)-containing primer (0.2% aqueous solution) to inhibit dentinal enzymes, preserve the hybrid layer (HL) and remain within the HL, after 10 years of aging in artificial saliva at 37°C. MethodsNon-carious extracted molars were assigned to two groups, cut into slabs exposing middle/deep dentin, etched and bonded with Adper Scotchbond 1XT (SB1XT) with or without 0.2% CHX aqueous solution pretreatment. Composite build-ups were made, and the specimens were cut in 1-mm thick bonded sticks. In situ zymography was performed on freshly prepared specimens (T0) and specimens aged for 10 years (T10-yr) at 37°C in artificial saliva, to investigate endogenous gelatinolytic activity within the HL. At T10-yr, specimens were also decalcified and embedded in epoxy resin for TEM analysis. Micro-Raman spectroscopy was performed at T0 and T10-yr to evaluate the chemical profiles in intertubular dentin and the HL. ResultsIn situ zymography showed less pronounced enzymatic activity in the CHX-pretreated group (p<0.05) regardless of aging, maintaining a similar level of fluorescence at T0 and T10-yr (p>0.05). TEM results showed that 98% of the HL had been degraded in the control group, while 95% of the HL was intact in the experimental group. Moreover, all the Raman spectra peaks assigned to CHX could be identified only in the CHX-pretreated group (T0 and T10-yr). SignificanceIn vitro, CHX remains in the HL after 10 years with its inhibitory effect preserved. This may be the underlying factor for HL preservation after this long aging period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.