Abstract
In this work, an electrochemical sensor based on modification of a glassy carbon electrode (GCE) with magnetic iron oxide nanoparticles (Fe3O4) and chitosan (CS) was developed to quantify chlorhexidine digluconate (CHD), a worldwide used antiseptic. Cyclic voltammetric and electrochemical impedance spectroscopy assays showed that the permeable Fe3O4/CS film on the GCE surface improved the conductivity and facilitated electron transfer. CHD response at GCE/Fe3O4/CS corresponds to an irreversible anodic diffusion-controlled process (at about 1.13V in 0.04molL−1 Britton-Robinson buffer, pH 4.0) involving the transfer of two electrons and an equal number of proton. Quantum mechanics and Monte Carlo simulations were performed to give insights on the CHD oxidation process. The modification with Fe3O4/CS induced alterations in CHD geometry that led to degeneration of the highest occupied molecular orbitals (HOMO and HOMO−1), facilitating the oxidation process because both sides of the molecule contribute to these orbitals. It facilitated also, at least thermodynamically, the first electron lost. The oxidation of CHD probably conducts to the formation of two p-chloroaniline and, possibly, two biguanidine molecules. GCE/Fe3O4/CS exhibited suitable electroanalytical characteristics in terms of sensitivity (8.78±0.58Amol−1L), linearity range (2.10×10−8–2.09×10−7molL−1), detection limit (5.7×10−9molL−1; 0.005mgkg−1), intra-day repeatability (2.8% RSD), and reproducibility (4.6% RSD). To evaluate the accuracy and applicability of the proposed electroanalytical methodology, two CHD commercial formulations were analysed and the attained results were in agreement with those attained by the chromatographic reference method. Overall, the developed GCE/Fe3O4/CS exhibits appropriate performance and relevant advantages for CHD electroanalysis in commercial products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.