Abstract

As the beginning of the COVID-19 pandemic, numerous attempts have been made to identify specific antiviral mouth rinses which may help reduce the salivary viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Although the results from in vivo well-controlled clinical studies are yet pending, many contemporary antimicrobial mouth rinses have been explored for potential antiviral properties with respect to SARS-CoV-2. The most widely used compounds such as povidone-iodine, chlorhexidine, hydrogen peroxide, and essential oils have been known to have antiviral activity by targeting the outer lipid membrane or by denaturing the capsid proteins of enveloped virus SARS-CoV. Until now, there has been scanty scientific evidence on the molecular basis of interaction of the gold standard antimicrobial mouth rinse as an underlying mechanism of its anti-SARS-CoV-2 effect. The current communication reports the findings of our in silico docking study pertaining to understand the interactions of chlorhexidine with the most well-studied target of the SARS-CoV main protease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.