Abstract

Human diploid fibroblasts (HDFs) cultured in vitro have limited capacity to proliferate after population doubling is repeated several times, and they enter into a state known as replicative senescence or cellular senescence. This study aimed to investigate the effect of Chlorella vulgaris on the replicative senescence of HDFs by determining the expression of senescence-associated genes. Young and senescent HDFs were divided into untreated control and C. vulgaris-treated groups. A senescence-associated gene transcription analysis was carried out with qRT-PCR. Treatment of young HDFs with C. vulgaris reduced the expression of SOD1, CAT and CCS (p < 0.05). In addition, the expression of the SOD2 gene was increased with C. vulgaris treatment in young, pre-senescent and senescent HDFs (p < 0.05). Treatment of senescent HDFs with C. vulgaris resulted in the downregulation of TP53 gene expression. The expression of the CDKN2A gene was significantly decreased upon C. vulgaris treatment in young and senescent HDFs. C. vulgaris treatment was also found to significantly upregulate the expression of the MAPK14 gene in pre-senescent HDFs. In addition, the expression of MAPK14 was significantly upregulated compared to that in the untreated senescent HDFs (p < 0.05). In summary, the expression of senescence-associated genes related to antioxidants and the insulin/insulin-like growth factor-1 signalling, DNA damage-associated signalling, cell differentiation and cell proliferation pathways was modulated by C. vulgaris during replicative senescence of human diploid fibroblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call