Abstract

The aim of this work was to propose a novel process to make Chlorella pyrolyzed and in situ upgraded to fuel over amphiphilic SO3H-SBA-15 catalysts. This strategy is developed to build a Pickering emulsion system through the w/o (water/decalin) droplets. Chlorella catalytic pyrolysis has been conducted under the different heating rates to get the activation energy 166 kJ/mol (α = 0.5) according to the kinetic-free model. Palmitic acid, as a model compound, was employed for TG and DRIFTS analysis to elucidate the pyrolysis and deoxygenation reaction pathway. n-hexadecane pyrolysis at 3 MPa N2 illustrated the peak cracking temperature declining from thermally 422 °C to catalytically 413 °C. N2 physisorption of the fresh and post-reaction catalysts indicated that there is little catalyst decay. With improved thermal stability and hydrophobicity, the SO3H-SBA-15 catalysts showed enhanced performance for Chlorella pyrolysis, and revealed the promising application for better fuel production in aqueous conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call