Abstract

Chlorbenzuron is a kind of benzoylphenylureas (BPUs), which plays a broad role in insect growth regulators (IGRs), with an inhibitory effect on chitin biosynthesis. However, BPUs how to regulate glycolysis and insect growth remains largely unclear. Here, we investigated the effects of chlorbenzuron on growth, nutritional indices, glycolysis, and carbohydrate homeostasis in Hyphantria cunea, a destructive and highly polyphagous forest pest, to elucidate the action mechanism of chlorbenzuron from the perspective of energy metabolism. The results showed that chlorbenzuron dramatically restrained the growth and nutritional indices of H. cunea larvae and resulted in lethality.Meanwhile, we confirmed that chlorbenzuron significantly decreased carbohydrate levels, adenosine triphosphate (ATP), and pyruvic acid (PA) in H. cunea larvae. Further studies indicated that chlorbenzuron caused a significant enhancement in the enzyme activities and mRNA expressions of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK), resulting in increased glycolytic flux. Expressions of genes involved in the AMP-activated protein kinase (AMPK) signaling pathway were also upregulated. Moreover, chlorbenzuron had remarkable impacts on H. cunea larvae from the perspective of metabolite enrichment, including the tricarboxylic acid (TCA) cycle and glycolysis, indicating an energy metabolism disorder in larvae. The findings provide a novel insight into the molecular mechanism by which chlorbenzuron abnormally promotes glycolysis and eventually interferes with insect growth and nutritional indices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call