Abstract

Under anaerobic conditions, chlorate is reduced to chlorite, a cytotoxic compound that triggers oxidative stress within bacterial cultures. We previously found that BD Bacto Casamino Acids were contaminated with chlorate. In this study, we investigated whether chlorate contamination is detectable in other commercial culture media. We provide evidence that in addition to different batches of BD Bacto Casamino Acids, several commercial agar powders are contaminated with chlorate. A direct consequence of this contamination is that, during anaerobic growth, Escherichia coli cells activate the expression of msrP, a gene encoding periplasmic methionine sulfoxide reductase, which repairs oxidized protein-bound methionine. We further demonstrate that during aerobic growth, progressive oxygen depletion triggers msrP expression in a subpopulation of cells due to the presence of chlorate. Hence, we propose that chlorate contamination in commercial growth media is a source of phenotypic heterogeneity within bacterial populations. IMPORTANCE Agar is arguably the most utilized solidifying agent for microbiological media. In this study, we show that agar powders from different suppliers, as well as certain batches of BD Bacto Casamino Acids, contain significant levels of chlorate. We demonstrate that this contamination induces the expression of a methionine sulfoxide reductase, suggesting the presence of intracellular oxidative damage. Our results should alert the microbiology community to a pitfall in the cultivation of microorganisms under laboratory conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call