Abstract

The oxidation of residual Mn(II) in finished water can lead to MnOx deposit formation in drinking water pipes. Previous work has illustrated that microbes readily cause Mn deposit build-up in nondisinfected pipes. Here, we investigated how disinfectant type and dose affected Mn(II) oxidation and MnOx accumulation through long-term pipe experiments using water produced by a full-scale water treatment plant. The results showed that Mn(II) oxidation initiated quickly in the new pipes chlorinated with 1.0 mg/L free chlorine. After 130 days of MnOx accumulation, 100 μg/L Mn(II) in water could drop to 1.0 μg/L within 1.5 h, resulting from autocatalytic Mn(II) oxidation and Mn(II) adsorption by MnOx deposits accumulated on pipe walls. In contrast to chlorination, chloramination (1.0 mg/L Cl2) caused almost no MnOx accumulation during the entire study period. The underlying mechanism was probably that monochloramine inhibited microbial Mn(II) oxidation without causing significant abiotic Mn(II) oxidation like free chlorine. A low free chlorine dose (0.3 mg/L) also reduced Mn deposit formation by mass but to a lesser extent than chloramination. After disinfection (chlorination or chloramination) was discontinued for days, biotic Mn(II) oxidation occurred, and this process was inhibited again once disinfection was resumed. In addition, Fe(III) of 200 μg/L enhanced the stability of MnOx accumulated on pipe surfaces, while humic acid induced MnOx deposit resuspension. Overall, this study highlighted the regulating role of disinfectants in MnOx formation and provided insights into developing appropriate disinfection strategies for Mn deposit control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.