Abstract

An integrated production of methyl ester and ɛ-polylysine from Chlamydomonas sp. was studied using biorefinery approach. The harvesting efficiency of Chlamydomonas sp. was increased up to 92% by treatment with a flocculant FeCl3 at 100 mg/L for 30 min. The DMC (dimethyl carbonate) mediated enzyme catalyzed in-situ transesterification of Chlamydomonas sp. yielded the maximum methyl ester of 92% under optimized conditions. The valued-added product ɛ-polylysine was produced from hydrolysate obtained from the spent biomass of Chlamydomonas sp. using Streptomyces sp. The key components of sugar and MgSO4 used for ɛ-polysine production were optimized whereby the maximum ɛ-polylysine production was achieved at 50 g/L sugar and 0.3 g/L MgSO4. The ɛ-polylysine production was further enhanced by supplementation of important amino acids (lysine and aspartate) and TCA cycle intermediates (citric acid and α-ketoglutaric acid). The maximum ɛ-polylysine production of 2.24 g/L was found with 4 mM citric acid supplementation after 110 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.