Abstract
Simple, experimentally tractable systems such Saccharomyces cerevisiae, Chlamydomonas reinhardtii, and Arabidopsis thaliana are powerful models for dissecting basic biological processes. The unicellular green alga C. reinhardtii is amenable to a diversity of genetic and molecular manipulations. This haploid organism grows rapidly in axenic cultures, on both solid and liquid medium, with a sexual cycle that can be precisely controlled. Vegetative diploids are readily selected through the use of complementing auxotrophic markers and are useful for analyses of deleterious recessive alleles. These genetic features have permitted the generation and characterization of a wealth of mutants with lesions in structural, metabolic and regulatory genes. Another important feature of C. reinhardtii is that it has the capacity to grow with light as a sole energy source (photoautotrophic growth) or on acetate in the dark (heterotrophically), facilitating detailed examination of genes and proteins critical for photosynthetic or respiratory function. Other important topics being studied using C. reinhardtii, many of which have direct application to elucidation of protein function in animal cells (26), include flagellum structure and assembly, cell wall biogenesis, gametogenesis, mating, phototaxis, and adaptive responses to light and nutrient environments (32, 44). Some of these studies are directly relevant to applied problems in biology, including the production of clean, solar-generated energy in the form of H2, and bioremediation of heavy metal wastes. Recent years have seen the development of a molecular toolkit for C. reinhardtii (42, 44, 66, 98, 99). Selectable markers are available for nuclear and chloroplast transformation (4, 5, 12, 13, 30, 44, 56, 82). The Arg7 (22) and Nit1 (30) genes are routinely used to rescue recessive mutant phenotypes. The bacterial ble gene (which codes for zeocin resistance [70, 112]) is an easily scored marker for nuclear transformation, and the bacterial aadA gene (which codes for spectinomycin and streptomycin resistance) is a reliable marker for chloroplast transformation (39). Nuclear transformation can be achieved by
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.