Abstract

Infections caused by the obligate intracellular pathogen Chlamydia trachomatis have a marked impact on human health. C. trachomatis serovariants are the leading cause of bacterial sexually transmitted disease and infectious preventable blindness. Despite decades of effort, there is no practical vaccine against C. trachomatis diseases. Here we report that all C. trachomatis reference serotypes responsible for sexually transmitted disease and blinding trachoma synthesize a highly conserved surface-exposed antigen termed polymorphic membrane protein D (PmpD). We show that Ab specific to PmpD are neutralizing in vitro. We also present evidence that Ab against serovariable-neutralizing targets, such as the major outer membrane protein, block PmpD neutralization. This finding suggests that a decoy-like immune evasion strategy may be active in vivo whereby immunodominant type-specific surface antigens block the neutralizing ability of species-common PmpD Ab. Collectively, these results show that PmpD is a previously uncharacterized C. trachomatis species-common pan-neutralizing target. Moreover, a vaccine protocol using recombinant PmpD to elicit neutralizing Ab in the absence of immunodominant type-specific Ab might be highly efficacious and surpass the level of protection achieved through natural immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.