Abstract

Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection worldwide and known to increase the risk for HIV acquisition. Few studies have investigated how infection of epithelial cells compromises barrier integrity and antimicrobial response. ECC-1 cells, a human uterine epithelial cell line, were treated with live and heat-killed C.trachomatis. Epithelial barrier integrity measured as transepithelial resistance (TER), chemokines antimicrobial levels, and antimicrobial mRNA expression was measured by ELISA and Real-time RT-PCR. Epithelial barrier integrity was compromised when cells were infected with live, but not with heat-killed, C.trachomatis. IL-8 secretion by ECC-1 cells increased in response to live and heat-killed C.trachomatis, while MCP-1, HBD2 and trappin2/elafin secretion decreased with live C.trachomatis. Live C.trachomatis suppresses ECC-1 innate immune responses by compromising the barrier integrity, inhibiting secretion of MCP-1, HBD2, and trappin-2/elafin. Differential responses between live and heat-killed Chlamydia indicate which immune responses are dependent on ECC-1 infection rather than the extracellular presence of Chlamydia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.