Abstract

The Chlamydia trachomatis genome encodes glycolysis and pentose phosphate pathway enzymes, two ATP/ADP exchange proteins, and other energy transduction-related components. We asked if and when chlamydial genes specifying products related to energy transduction are expressed during active vs. persistent infection in in vitro models and in synovia from Chlamydia-associated arthritis patients. Hep-2 cells infected with K serovar were harvested from 0–48 h post-infection (active infection). Human monocytes identically infected were harvested at 1, 2, 3, 5 days post-infection (persistent). RNA from each preparation and from synovial samples PCR-positive/-negative for Chlamydia DNA was subjected to RT-PCR targeting (a) chlamydial primary rRNA transcripts and adt1 mRNA, (b) chlamydial mRNA encoding enzymes of the glycolysis ( pyk, gap, pgk) and pentose phosphate ( gnd, tal) pathways, the TCA cycle ( mdhC, fumC), electron transport system ( cydA, cydB), and σ factors ( rpoD, rpsD, rpoN). Primary rRNA transcripts and adt1 mRNA were present in each infected preparation and patient sample; controls were negative for chlamydial RNA. In infected Hep-2 cells, all energy transduction-related genes were expressed by ≈11 h post-infection. In monocytes, pyk, gap, pgk, gnd, tal, cydA mRNA were present in 1–2-day-infected cells but absent at 3 days and after; cydB, mdhC, fumC were expressed through 5 days post-infection. RT-PCR targeting mRNA from σ factor genes indicated that lack of these gene products cannot explain selective transcriptional down-regulation during persistence. Analyses of RNA from synovial tissues mirrored those from the monocyte system. These data suggest that in the first phase of active chlamydial infection, ADP/ATP exchange provides energy required for metabolism; in active growth, glycolysis supplements host ATP. In persistence host, rather than bacterially produced, ATP is the primary energy source. Metabolic rate in persistent C. trachomatis is lower than in actively growing cells, as judged from assays for relative chlamydial primary rRNA transcript levels in persistent vs. actively growing cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.