Abstract

Although the protective effects of Chlamydia psittaci plasmid-encoded protein CPSIT_P7 as vaccine antigens to against chlamydial infection have been confirmed in our previous study, the function and mechanism of CPSIT_P7 inducing innate immunity in the antibacterial response remain unknown. Here, we found that plasmid protein CPSIT_P7 could induce M1 macrophage polarization upregulating the genes of the surface molecule CD86, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and antibacterial effector NO synthase 2 (iNOS). During M1 macrophage polarization, macrophages acquire phagocytic and microbicidal competence, which promotes the host antibacterial response. As we observed that CPSIT_P7-induced M1 macrophages could partially reduce the infected mice pulmonary Chlamydia psittaci load. Furthermore, CPSIT_P7 induced M1 macrophage polarization through the TLR4-mediated MAPK and NF-κB pathways. Collectively, our results highlight the effect of CPSIT_P7 on macrophage polarization and provide new insights into new prevention and treatment strategies for chlamydial infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call