Abstract

Chlamydia pneumoniae (C. pneumoniae) infection plays a potential role in angiogenesis. However, it is still an enigma how C. pneumoniae is involved in this process. Therefore, we investigated the effect of C. pneumoniae infection on angiogenesis, and then explored the roles of IQGAP1-related signaling in C. pneumoniae infection-induced angiogenesis. C. pneumoniae infection significantly enhanced angiogenesis as assessed by the tube formation assay possibly by inducing vascular endothelial cell (VEC) migration in the wound healing and Transwell migration assays. Subsequently, immunoprecipitation, Western blot and tube formation assay results showed that the phosphorylation of both IQGAP1 and N-WASP was required for the angiogenesis induced by C. pneumoniae infection. Our co-immunoprecipitation study revealed that IQGAP1 physically associated with N-WASP after C. pneumoniae infection of VECs. Actin polymerization assay further showed that in C. pneumoniae-infected VECs, both IQGAP1 and N-WASP were recruited to filamentous actin, and shared some common compartments localized at the leading edge of lamellipodia, which was impaired after the depletion of IQGAP1 by using the small interference RNA. Moreover, the knockdown of IQGAP1 also significantly decreased N-WASP phosphorylation at Tyr256 induced by C. pneumoniae infection. We conclude that C. pneumoniae infection promotes VEC migration and angiogenesis presumably through the IQGAP1-related signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.