Abstract

Chk1 is phosphorylated within its C-terminal regulatory domain by the upstream ATM/ ATR kinases during checkpoint activation, however how this modulates Chk1 function is poorly understood. Here, we show that Chk1 kinase activity is rapidly stimulated in a cell cycle phase-specific manner in response to both DNA damage and replication arrest, and that the extent and duration of activation correlates closely with regulatory phosphorylation at serines (S) S317, S345, and S366. Despite their evident co-regulation, substitutions of individual Chk1 regulatory sites with alanine (A) residues have differential effects on checkpoint proficiency and kinase activation. Thus, whereas Chk1 S345 is essential for all functions tested, mutants lacking S317 or S366 retain partial proficiency for G2/ M and S/ M checkpoint arrests triggered by DNA damage or replication arrest. These phenotypes reflect defects in Chk1 kinase induction, since the mutants are either partially (317A, 366A) or completely (345A) resistant to kinase activation. Importantly, S345 phosphorylation is impaired in Chk1 S317A and S366A mutants, suggesting that modification of adjacent SQ sites promotes this key regulatory event. Finally, we provide biochemical evidence that Chk1 catalytic activity is stimulated via a de-repression mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.