Abstract

We have fabricated an immunosensor based on carbon nanotubes and chitosan (CNT-CH) composite for detection of low density lipoprotein (LDL) molecules via electrochemical impedance technique. The CNT-CH composite deposited on indium tin oxide (ITO)-coated glass electrode has been used to covalently interact with anti-apolipoprotein B (antibody: AAB) via a co-entrapment method. The biofunctionalization of AAB on carboxylated CNT-CH surface has been confirmed by Fourier transform infrared spectroscopic and electron microscopic studies. The covalent functionalization of antibody on transducer surface reveals higher stability and reproducibility of the fabricated immunosensor. Electrochemical properties of the AAB/CNT-CH/ITO electrode have been investigated using cyclic voltammetric and impedimetric techniques. The impedimetric response of the AAB/CNT-CH/ITO immunoelectrode shows a high sensitivity of 0.953 Ω/(mg/dL)/cm(2) in a detection range of 0-120mg/dL and low detection limit of 12.5mg/dL with a regression coefficient of 0.996. The observed low value of association constant (0.34M(-1)s(-1)) indicates high affinity of AAB/CNT-CH/ITO immunoelectrode towards LDL molecules. This fabricated immunosensor allows quantitative estimation of LDL concentration with distinguishable variation in the impedance signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.