Abstract

Peroxymonosulfate (PMS), which is dominated by free radical (SO4•-) pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a new catalyst (CFM@NC) was synthesized by hydrothermal carbonization method with chitosan (CS) as N and C precursors, and used to activate PMS to degrade dye wastewater. CFM@NC/PMS system can degrade 50 mg·L−1 rhodamine B by 99.59 % within 30 min, and the degradation rate remains as high as 97.32 % after 5 cycles. It has good complex background matrices, acid-base anti-interference ability (pH 2.6–10.1), universality and reusability. It can degrade methyl orange and methylene blue by >98 % within 30 min. The high efficiency of the composite is due to the fact that CS-modified MoS2 as a carrier exposes a large number of active sites, which not only disperses CuFe2O4 nanoparticles and improves the stability of the catalyst, but also provides abundant electron rich groups, which promotes the activation of PMS and the production of reactive oxygen species (ROS). PMS is effectively activated by catalytic sites (Cu+/Cu2+, Fe2+/Fe3+, Mo4+/Mo6+, pyridine N, pyrrole N, edge sulfur and hydroxyl group) to produce a large number of radicals to attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, free radical SO4•- is the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient heterogeneous catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.