Abstract

In this study, a chitosan/activated carbon composite was developed for the sustainable removal of dye pollutants from activated carbon derived from chitosan. First, chitosan was converted into chitosan-derived activated carbon (C-AC) with a large Brunauer-Emmett-Teller (BET) surface area of 2428 m2/g through carbonization using a potassium hydroxide (KOH) chemical activator. To enable simple separation from contaminated water and sustainable use in the adsorption process, the generated C-AC was incorporated into a bead-type, stable three-dimensional chitosan polymer network structure. The prepared C-AC-incorporated chitosan beads showed excellent adsorption capacity for the anionic acid orange 7 (AO) (511.38 mg/g) and the cationic methylene blue (MB) (413.08 mg/g). In addition, it maintained structural stability even in various pH environments and could be easily separated from contaminated water. The C-AC-incorporated chitosan beads showed excellent reusability and durability, maintaining at least 82% and 86% removal efficiencies for AO and MB dyes even after five reuses. This study suggests the potential use of chitosan as an eco-friendly adsorbent that can be utilized simultaneously as an activated carbon precursor and as a matrix for robust bead-like polymer composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.