Abstract

Oral delivery of chitosan-coated artesunate (CPA) has been proven to be effective at preventing ulcerative colitis (UC) in mice. However, the anti-inflammatory mechanism is not fully understood. STAT6 is a key transcription factor that promotes anti-inflammatory effects by inducing M2 and Th2 dominant phenotypes, therefore we hypothesized STAT6 might play a key role in the process. To prove it, a STAT6 gene knockout macrophage cell line (STAT6−/− RAW264.7, by CRISPR/Cas9 method), and its corresponding Caco-2/RAW264.7 co-culture system combined with the STAT6 inhibitor (AS1517499, AS) in a mouse UC model were established and studied. The results showed that CPA remarkably suppressed the activation of TLR-4/NF-κB pathway and the mRNA levels of proinflammatory cytokines, while increased the IL-10 levels in RAW264.7. This effect of CPA contributed to the protection of the ZO-1 in Caco-2 which was disrupted upon the stimulation to macrophages. Simultaneously, CPA reduced the expression of CD86 but increase the expression of CD206 and p-STAT6 in LPS-stimulated RAW264.7 cells. However, above alterations were not obvious as in STAT6−/− RAW264.7 and its co-culture system, suggesting STAT6 plays a key role. Furthermore, CPA treatment significantly inhibited TLR-4/NF-κB activation, intestinal macrophage M1 polarization and mucosal barrier injury induced by DSS while promoted STAT6 phosphorylation in the UC mouse model, but this effect was also prominently counteracted by AS. Therefore, our data indicate that STAT6 is a major regulator in the balance of M1/M2 polarization, intestinal barrier integrity and then anti-colitis effects of CPA. These findings broaden our understanding of how CPA fights against UC and imply an alternative treatment strategy for UC via this pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call