Abstract

A Schiff base of chitosan with cinnamaldehyde (Cinn-Cht) was synthesized in a single step using microwave irradiation and characterized using spectroscopic techniques. The synthesized Schiff base was used for the mitigation of carbon steel corrosion in 15% HCl. The corrosion evaluation was performed using weight loss tests, electrochemical impedance measurements, and polarization studies. The corrosion inhibition efficiency increased with inhibitor dosage and achieved a high value of 85.16% at 400 mgL−1. The inhibitor adsorption followed the Langmuir isotherm and displayed a mixed physical and chemical adsorption behavior. To further improve the corrosion inhibition efficiency, potassium iodide (KI) was incorporated in the corrosive solution, which increased the inhibition efficiency further to 92.45% at a concentration of 10 mM. Surface studies carried out via SEM analyses indicated the inhibitor adsorption and protective film formation on the steel surface. The computational studies carried out via DFT revealed that mainly the protonated form of inhibitor adsorbs on the metal surface. Monte Carlo simulation studies also showed that the protonated form of the inhibitor molecule exhibited higher adsorption energy than the neutral inhibitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call