Abstract

The burgeoning interest in biopolymer 3D printing arises from its capacity to meticulously engineer tailored, intricate structures, driven by the intrinsic benefits of biopolymers—renewability, chemical functionality, and biosafety. Nevertheless, the accessibility of economical and versatile 3D-printable biopolymer-based inks remains highly constrained. This study introduces an electroconductive ink for direct-ink-writing (DIW) 3D printing, distinguished by its straightforward preparation and commendable printability and material properties. The ink relies on chitosan as a binder, carbon fibers (CF) a low-cost electroactive filler, and silk fibroin (SF) a structural stabilizer. Freeform 3D printing manifests designated patterns of electroconductive strips embedded in an elastomer, actualizing effective strain sensors. The ink's high printability is demonstrated by printing complex geometries with porous, hollow, and overhanging structures without chemical or photoinitiated reactions or support baths. The composite is lightweight (density 0.29 ± 0.01 g/cm3), electroconductive (2.64 ± 0.06 S/cm), and inexpensive (20 USD/kg), with tensile strength of 20.77 ± 0.60 MPa and Young's modulus of 3.92 ± 0.06 GPa. 3D-printed structures exhibited outstanding electromagnetic interference (EMI) shielding effectiveness of 30–31 dB, with shielding of >99.9 % incident electromagnetic waves, showcasing significant electronic application potential. Thus, this study presents a novel, easily prepared, and highly effective biopolymer-based ink poised to advance the landscape of 3D printing technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.