Abstract

Chitosan has proved efficient at removing platinum in dilute effluents. The maximum uptake capacity reaches 300 mg/g (almost 1.5 mmol/g). The optimum pH for sorption is pH 2. A glutaraldehyde cross-linking pretreatment is necessary to stabilize the biopolymer in acidic solutions. Sorption isotherms have been studied as a function of pH, sorbent particle size, and the cross-linking ratio. Surprisingly, the extent of the cross-linking (determined by the concentration of the cross-linking agent in the treatment bath) has no significant influence on uptake capacity. Competitor anions such as chloride or nitrate induce a large decrease in the sorption efficiency. Sorption kinetics show also that uptake rate is not significantly changed by increasing either the cross-linking ratio or the particle size of the sorbent. Mass transfer rates are significantly affected by the initial platinum concentration and by the conditioning of the biopolymer. Gel-bead conditioning appears to reduce the sorption rate. While for molybdate and vanadate ions, mass transfer was governed by intraparticle mass transfer, for platinum, both external and intraparticle diffusion control the uptake rate. In contrast with the former ions, platinum does not form polynuclear hydrolyzed species, which are responsible for steric hindrance of diffusion into the polymer network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call