Abstract

A highly porous nanofibrous network that can functionalize antibacterial and therapeutic agents can be considered a suitable option for skin wound healing. In this study, α-tricalcium phosphate (α-TCP)/nitrogen-doped carbon quantum dots (N-CQDs) nanocomposite was synthesized and then applied to the fabrication of novel chitosan (CS)/silk fibroin (SF)/N-CQDs/α-TCP wound dressing via electrospinning system. The prepared nanomaterials were well characterized using X-ray diffraction, Fourier-transform infrared, scanning and transmission electron microscopes analyses, and antibacterial assay. Furthermore, nanofibers were evaluated regarding their physical properties, such as tensile behavior, water uptake capacity, and water contact angle. The results reveal that CS/SF/N-CQDs/α-TCP showed lower MIC values against E. coli and S. aureus (1.45 ± 0.26 mg/mL and 1.59 ± 0.12 mg/mL) compared to other synthesized materials. Also, in-vitro investigations were performed, and the MTT assay on the HFF cell line revealed that CS/SF/N-CQDs/α-TCP nanofiber could possess good biocompatibility. Interestingly, the scratch test proved that faster cell migration and proliferation occurred in the presence of CS/SF/N-CQDs/α-TCP 73.23 ± 2.71 %). Finally, we examined the wound healing ability of CS/SF/N-CQDs/α-TCP nanofiber using an animal model. The results confirmed that produced nanofiber could efficiently promote wound closure by 96.73 ± 1.25 % in 12 days. Histopathological analyses verified accelerated re-epithelization and well-structured epidermis in CS/SF/N-CQDs/α-TCP nanofiber-treated group. Based on our findings, the CS/SF/N-CQDs/α-TCP nanofiber with excellent antimicrobial properties is highly suitable for wound healing and skin tissue regeneration applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call