Abstract

A chitosan-silica hybrid aerogel was synthesized and presented as a potential adsorbent for the purification of cupric ion-contaminated media. The combination of the organic polymer (chitosan), which can be obtained from fishery wastes, with silica produced a mostly macroporous material with an average pore diameter of 33 µm. The obtained aerogel was extremely light (56 kg m-3), porous (96% porosity, 17 cm3 g-1 pore volume), and presented a Brunauer-Emmett-Teller surface area (SBET) of 2.05 m2 g-1. The effects of solution pH, aerogel and Cu(II) concentration, contact time, and counterion on cupric removal with the aerogel were studied. Results showed that the initial pH of the cation-containing aqueous solution had very little influence on the removal performance of this aerogel. According to Langmuir isotherm, this material can remove a maximum amount of ca. 40 mg of cupric ions per gram and the kinetic data showed that the surface reaction was the rate-limiting step and equilibrium was quickly reached (in less than one hour). Thus, the approach developed in this study enabled the recovery of waste for the preparation of a novel material, which can be efficiently reused in a new application, namely water remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call