Abstract

Preparation of hydroxyapatite (HA) coating on the titanium surface through the electrochemical method can improve its osteoinductivity.However, simple HA coating is of low density and easy to shed off, which may result in decreased osteogenesis and antibiosis. Here, chitosan (CS) and Ca2+, mg2+ were co-hybridized by pulse electrodeposition (PED) in situ to obtain nanocomposite coating with omogeneously dispersed HA nanoparticles (HA-NPs) and mg(OH)2 nanoparticles (Mg(OH)2-NPs), and dense composite HA/MgO coatings were then prepared after high-temperature sintering. The HA / MgO coating is nano spherical,showed steady and biocompatible Ca2+, Mg2+ release due to the regulation of CS and high-temperature sintering, and exhibited superior apatite-forming bioactivity. The antibacterial rate of HA/MgO coating against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were both over 96%. Osteoblasts (OBs) and vascular endothelial cells (VECs) showed good adhesion and proliferation on the nanocomposite coating, indicating that the nanocomposite coating had favorable angiogenic and osteogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.