Abstract

The exoskeleton of marine shrimp contains a natural, biocompatible polymer chitin, which is dumped as a waste. The study proposes the sustainable single-pot-extraction of chitosan from the waste and its use in the fabrication of wound-dressings, and thus leverage its piezoelectric, antioxidant, hypoglycaemic and medicinal properties in wound-healing. The Fourier transform infrared spectrum revealed that marine chitosan contains functional groups with N-O, O-H, and CO stretching. Scanning electron micrographs demonstrated the spherical and mesoporous structures of the extracted chitosan. X-ray diffraction analysis showed a semi-crystalline phase of chitosan particles with a mean size of 28.9 nm. The film prepared with marine shrimp chitosanpolyvinyl alcohol (PVA) composite, and used as a wound dressing exhibited significant wound healing properties with a regeneration efficiency of 78% in 8 days in Wistar albino rats. The wound healing efficiency was enhanced by the addition of cost effective, non-toxic/environmentally friendly silver nanoparticles (AgNPs) synthesized from Rumex acetosa (sorrel) plant extracts and electrospinning of the nanofibrous composites of chitosan/PVA/AgNPs with high antibacterial, antioxidant and wound healing capacity of 96% in 8 days. Thus, the current study supports the use of a natural piezoelectric chitosan polymer as a wound dressing material, either in film or nanofiber, for normal as well as diabetic wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.