Abstract

The belated and compromised incisional skin wound healing caused by the invading of methicillin-resistance staphylococcus aureus is a serious problem in clinic. Designing a new therapeutic strategy to inhibit the growth of invading bacteria at post-surgical site might be helpful in fast healing of post-surgical wounds. In this study, we developed cephradine (Ceph) encapsulated chitosan and poly (3-hydroxy butyric acid-co-3-hydroxy valeric acid, (PHBV)) hybrid nanofibers (Ceph-CHP NFs) employing an electrospinning method to revamp the Ceph bioavailability at the post-surgical wound site to prevent the growth of invading bacteria and trigger the wound healing process. The fabricated nanofibers revealed smooth and uniform surface with a diameter range of 160 ± 25 to 190 ± 55 nm, depending on Ceph concentration. Further, the electrospun hybrid nanofibers exhibited a higher entrapment efficiency (EE) and drug loading capacity (DLC) nearly 72.8 ± 5.2 % and 16.5 ± 3.2 %, respectively. Moreover, the Ceph-CHP NFs showed high swelling rate and biodegradation in presence of lysozyme in contrast to blank CHP NFs. Ceph-CHP NFs exhibited fast drug release in initial few hours followed by slow and controlled drug release drug up to 48 h with a constant rate. In-vitro antimicrobial studies indicated the heightened efficacy of Ceph-CHP NFs against MRSA clinical isolates and exhibited no visible cytotoxicity against keratinocytes, HC11 and L929 cells. Lastly, Ceph-CHP NFs showed the enhanced wound healing and bacterial clearance from post-surgical wound compared to Ceph in C57BL/6 mice skin model. Overall, our results showed that Ceph-CHP NFs might be used as a promising wound dressing material for MRSA-infected post-surgical wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call